228 research outputs found

    Grids of stellar models. VIII. From 0.4 to 1.0 Msun at Z=0.020 and Z=0.001, with the MHD equation of state

    Full text link
    We present stellar evolutionary models covering the mass range from 0.4 to 1 Msun calculated for metallicities Z=0.020 and 0.001 with the MHD equation of state (Hummer & Mihalas, 1988; Mihalas et al. 1988; D\"appen et al. 1988). A parallel calculation using the OPAL (Rogers et al. 1996) equation of state has been made to demonstrate the adequacy of the MHD equation of state in the range of 1.0 to 0.8 Msun (the lower end of the OPAL tables). Below, down to 0.4 Msun, we have justified the use of the MHD equation of state by theoretical arguments and the findings of Chabrier & Baraffe (1997). We use the radiative opacities by Iglesias & Rogers (1996), completed with the atomic and molecular opacities by Alexander & Fergusson (1994). We follow the evolution from the Hayashi fully convective configuration up to the red giant tip for the most massive stars, and up to an age of 20 Gyr for the less massive ones. We compare our solar-metallicity models with recent models computed by other groups and with observations. The present stellar models complete the set of grids computed with the same up-to-date input physics by the Geneva group [Z=0.020 and 0.001, Schaller et al. (1992), Bernasconi (1996), and Charbonnel et al. (1996); Z=0.008, Schaerer et al. (1992); Z=0.004, Charbonnel et al. (1993); Z=0.040, Schaerer et al. (1993); Z=0.10, Mowlavi et al. (1998); enhanced mass loss rate evolutionary tracks, Meynet et al. (1994)].Comment: Accepted for publication in A&A Supplement Serie

    MAPPING AGRICULTURAL LAND COVER FOR HYDROLOGIC MODELING IN THE PLATTE RIVER WATERSHED OF NEBRASKA

    Get PDF
    Throughout the western United States, natural resources managers are attempting to address the growing, and often competing, demands that municipal, agricultural and environmental interests have for water. The Platte River Cooperative Hydrology Study (COHYST) is a multi-agency effort that seeks to improve understanding of the ecology, geology, and hydrology of the Platte River watershed in central and western Nebraska. Information regarding the types, areal extent, and locations of crops (especially irrigated crops) is critical for estimating consumptive use of water. Digital land-cover and land-use datasets of the central and western Platte River valley have been prepared for four years: 1982, 1997, 2001, and 2005. Mapping was carried out using multidate Landsat satellite imagery in combination with ancillary geospatial data. The mapping was validated using field observations collected independently. Overall accuracy of the maps developed ranged from 74% to 82.7%. All land-cover maps and full documentation are available online at http://www.calmit.unl.edu/cohyst/

    Recent Advances in Modeling Stellar Interiors

    Full text link
    Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: 1) updates to input physics of stellar models; 2) progress in two and three-dimensional evolution and hydrodynamic models; 3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid gamma Dor/delta Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as eta Car and P Cyg, and the solar abundance problem.Comment: Proceedings for invited talk at conference High Energy Density Laboratory Astrophysics 2010, Caltech, March 2010, submitted for special issue of Astrophysics and Space Science; 7 pages; 5 figure

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T \sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm2^{-2} s1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T \sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-

    Graph Neural Networks for low-energy event classification & reconstruction in IceCube

    Get PDF
    IceCube, a cubic-kilometer array of optical sensors built to detect atmospheric and astrophysical neutrinos between 1 GeV and 1 PeV, is deployed 1.45 km to 2.45 km below the surface of the ice sheet at the South Pole. The classification and reconstruction of events from the in-ice detectors play a central role in the analysis of data from IceCube. Reconstructing and classifying events is a challenge due to the irregular detector geometry, inhomogeneous scattering and absorption of light in the ice and, below 100 GeV, the relatively low number of signal photons produced per event. To address this challenge, it is possible to represent IceCube events as point cloud graphs and use a Graph Neural Network (GNN) as the classification and reconstruction method. The GNN is capable of distinguishing neutrino events from cosmic-ray backgrounds, classifying different neutrino event types, and reconstructing the deposited energy, direction and interaction vertex. Based on simulation, we provide a comparison in the 1 GeV–100 GeV energy range to the current state-of-the-art maximum likelihood techniques used in current IceCube analyses, including the effects of known systematic uncertainties. For neutrino event classification, the GNN increases the signal efficiency by 18% at a fixed background rate, compared to current IceCube methods. Alternatively, the GNN offers a reduction of the background (i.e. false positive) rate by over a factor 8 (to below half a percent) at a fixed signal efficiency. For the reconstruction of energy, direction, and interaction vertex, the resolution improves by an average of 13%–20% compared to current maximum likelihood techniques in the energy range of 1 GeV–30 GeV. The GNN, when run on a GPU, is capable of processing IceCube events at a rate nearly double of the median IceCube trigger rate of 2.7 kHz, which opens the possibility of using low energy neutrinos in online searches for transient events.Peer Reviewe

    New Flux Limits in the Low Relativistic Regime for Magnetic Monopoles at IceCube

    Get PDF
    Magnetic monopoles are hypothetical particles that carry magnetic charge. Depending on their velocity, different light production mechanisms exist to facilitate detection. In this work, a previously unused light production mechanism, luminescence of ice, is introduced. This light production mechanism is nearly independent of the velocity of the incident magnetic monopole and becomes the only viable light production mechanism in the low relativistic regime (0.1-0.55c). An analysis in the low relativistic regime searching for magnetic monopoles in seven years of IceCube data is presented. While no magnetic monopole detection can be claimed, a new flux limit in the low relativistic regime is presented, superseding the previous best flux limit by 2 orders of magnitude

    Combining Maximum-Likelihood with Deep Learning for Event Reconstruction in IceCube

    Get PDF
    The field of deep learning has become increasingly important for particle physics experiments, yielding a multitude of advances, predominantly in event classification and reconstruction tasks. Many of these applications have been adopted from other domains. However, data in the field of physics are unique in the context of machine learning, insofar as their generation process and the laws and symmetries they abide by are usually well understood. Most commonly used deep learning architectures fail at utilizing this available information. In contrast, more traditional likelihood-based methods are capable of exploiting domain knowledge, but they are often limited by computational complexity. In this contribution, a hybrid approach is presented that utilizes generative neural networks to approximate the likelihood, which may then be used in a traditional maximum-likelihood setting. Domain knowledge, such as invariances and detector characteristics, can easily be incorporated in this approach. The hybrid approach is illustrated by the example of event reconstruction in IceCube

    A Search for Neutrinos from Decaying Dark Matter in Galaxy Clusters and Galaxies with IceCube

    Get PDF
    The observed dark matter abundance in the Universe can be explained with non-thermal, heavy dark matter models. In order for dark matter to still be present today, its lifetime has to far exceed the age of the Universe. In these scenarios, dark matter decay can produce highly energetic neutrinos, along with other Standard Model particles. To date, the IceCube Neutrino Observatory is the world’s largest neutrino telescope, located at the geographic South Pole. In 2013, the IceCube collaboration reported the first observation of high-energy astrophysical neutrinos. Since then, IceCube has collected a large amount of astrophysical neutrino data with energies up to tens of PeV, allowing us to probe the heavy dark matter models using neutrinos. We search the IceCube data for neutrinos from decaying dark matter in galaxy clusters and galaxies. The targeted dark matter masses range from 10 TeV to 10 PeV. In this contribution, we present the method and sensitivities of the analysis

    Performance of the D-Egg Optical Sensor for the IceCube Upgrade

    Get PDF
    New optical sensors called the "D-Egg" have been developed for cost-effective instrumentation for the IceCube Upgrade. With two 8-inch high QE photomultipliers, they offer increased effective photocathode area while retaining as much of the successful IceCube Digital Optical Module (DOM) design as possible. Mass production of D-Eggs has started in 2020. By the end of 2021, there will be 310 D-Eggs produced with 288 deployed in the IceCube Upgrade. The D-Egg readout system uses advanced technologies in electronics and computing power. Each of the two PMT signals is digitized using ultra-low-power 14-bit ADCs with a sampling frequency of 250-MSPS, enabling seamless and lossless event recording from single-photon signals to signals exceeding 200pe within 10ns, as well as flexible event triggering. In this paper, we report the single photon detection performance as well as the multiple photon recording capability of D-Eggs from the mass production line which have been evaluated with the built-in DAQ system

    Studies of systematic uncertainty effects on IceCube’s real-time angular uncertainty

    Get PDF
    Sources of astrophysical neutrinos can potentially be discovered through the detection of neutrinos in coincidence with electromagnetic or gravitational waves. Real-time alerts generated by IceCube play an important role in this search, acting as triggers for follow-up observations with instruments sensitive to other wavelengths. Once a high-energy event is detected by the IceCube real-time program, a complex and time consuming direction reconstruction method is run in order to calculate an accurate localisation. To investigate the effect of systematic uncertainties on the uncertainty estimate of the location, we simulate a set of high-energy events with a wide range of directions for different ice model realisations, the dominant systematic error in our localization uncertainty. This makes use of a novel simulation tool, which allows the treatment of systematic uncertainties with multiple continuously varied nuisance parameters. These events will be reconstructed using various reconstruction methods. This study will enable us to include systematic uncertainties in a robust manner in the real-time direction and error estimates
    corecore